Effects of exercise intensity on gut microbiome composition and function in people with type 2 diabetes.

European journal of sport science. 2023;23(4):530-541

Plain language summary

While it is well known that gut microbiome composition is both inherited and mostly modulated by diet, emerging evidence suggests regular exercise is associated with higher microbial diversity and health promoting taxa. The aim of this study was to examine whether different intensities of exercise exert differential effects on gut microbiome composition and function in low-active people with type 2 diabetes (T2D). This study was a sub-study of the Exercise for Type 2Diabetes (E4D) Study. Fourteen participants volunteered for this sub-study and were randomised into one of the two exercise groups. Results showed that: - in low active people with T2D, moderate intensity, longer duration exercise resulted in increased Bifidobacterium and Escherichia genera, A. municiphila, and butyrate-producing taxa from orders Lachnospirales and Clostridium Cluster IV. - higher intensity exercise also increased butyrate producers, but from different orders (Eryspelothrichales and Oscillospirales), and less investigated species (M.smithii, Negativibacilli spp). - there were no changes in gut microbiome metabolites (short-chain fatty acids). Authors concluded that over an 8-week training intervention, exercise intensity had differing effects on the abundance of specific gut microbiome taxa and function in low active people with T2D.

Abstract

Exercise is positively associated with higher microbial diversity, but there is limited information on exercise intensity's effect on gut microbiome composition and function in clinical populations. This study examines whether different intensities of exercise exert differential effects on gut microbiome composition and function in low active people with type 2 diabetes. This is a sub-study of the Exercise for Type 2 Diabetes Study, a single centre, prospective, randomised controlled trial. Participants (n = 12) completed 8-weeks of combined aerobic and resistance moderate intensity continuous training (C-MICT) or combined aerobic and resistance high-intensity interval training (C-HIIT). Faecal samples were collected before and after intervention to measure gut microbiome composition and metabolic pathways (metagenome shotgun sequencing) and short-chain fatty acids. Post-exercise α-diversity was different between groups as was the relative abundance of specific taxa was (p < .05). Post-exercise relative abundance of Bifidobacterium, A. municiphila, and butyrate-producers Lachnospira eligens, Enterococcus spp., and Clostridium Cluster IV were higher at lower exercise intensity. Other butyrate-producers (from Eryspelothrichales and Oscillospirales), and methane producer Methanobrevibacter smithii were higher at higher exercise intensity. Pyruvate metabolism (ko00620),COG "Cell wall membrane envelope biogenesis" and "Unknown function" pathways were significantly different between groups and higher in C-MICT post-exercise. Differential abundance analysis on KO showed higher expression of Two-component system in C-HIIT. Transcription factors and "unknown metabolism" related pathways decreased in both groups. There were no significant between group changes in faecal short chain fatty acids. Exercise intensity had a distinct effect on gut microbiome abundance and metabolic function, without impacting short-chain fatty acid output.HighlightsEvidence of exercise effect on gut microbiome outcomes is limited to healthy and athletic populationsIn low active people with type 2 diabetes, different exercise intensities increased specific health promoting and butyrate producers species, and showed differentially abundant gut microbiome metabolic pathways.Further investigation is warranted, and if this supports the present findings, then specific exercise intensities may be promoted to target specific species and optimise gut health.

Lifestyle medicine

Patient Centred Factors : Mediators/Gut microbiome
Environmental Inputs : Physical exercise ; Microorganisms
Personal Lifestyle Factors : Exercise and movement
Functional Laboratory Testing : Blood ; Stool

Methodological quality

Jadad score : 3
Allocation concealment : Yes

Metadata